ASAP: Aligning Simulation and Real-World Physics
for Learning Agile Humanoid Whole-Body Skills

Tairan He™'?  Jiawei Gao'!  Wenli Xiao™?  Yuanhang Zhang™  Zi Wang'  Jiashun Wang'
Zhengyi Luo'>  Guangi He!  Nikhil Sobanbab!  Chaoyi Pan'  Zeji Yi! = Guannan Qu'
Kris Kitani'  Jessica Hodgins'  Linxi “Jim” Fan?  Yuke Zhu?> Changliu Liu!  Guanya Shi!

!Carnegie Mellon University
Page: https://agile.human2humanoid.com

’&:\Jg

% Y Qn\m‘"’

[T

(a)

(b)
(c)
8-
“~ v «
o
A& Sy R
(d) &
Fig. 1.

NVIDIA
Code: https://github.com/LeCAR-Lab/ASAP

"Equal Contributions

n
y 3
e’}‘

RONALDG, |

(e)

The humanoid robot (Unitree G1) demonstrates diverse agile whole-body skills, showcasing the control policies’ agility: (a) Cristiano Ronaldo’s

signature celebration involving a jump with a 180-degree mid-air rotation; (b) LeBron James’s “Silencer” celebration involving single-leg balancing; and (c)
Kobe Bryant’s famous fadeaway jump shot involving single-leg jumping and landing; (d) 1.5m-forward jumping; (e) Leg stretching; (f) 1.3m-side jumping.

Abstract— Humanoid robots hold the potential for unparal-
leled versatility for performing human-like, whole-body skills.
However, achieving agile and coordinated whole-body motions
remains a significant challenge due to the dynamics mismatch
between simulation and the real world. Existing approaches,
such as system identification (SysID) and domain randomization
(DR) methods, often rely on labor-intensive parameter tuning

or result in overly conservative policies that sacrifice agility.
In this paper, we present ASAP (Aligning Simulation and Real
Physics), a two-stage framework designed to tackle the dynamics
mismatch and enable agile humanoid whole-body skills. In the
first stage, we pre-train motion tracking policies in simulation
using retargeted human motion data. In the second stage, we
deploy the policies in the real world and collect real-world data
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(b) Delta Action Model Training

(c¢) Policy Fine-tuning
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Fig. 2. Overview of ASAP. (a) Motion Tracking Pre-training and Real Trajectory Collection: With the humanoid motions retargeted from human videos,
we pre-train multiple motion tracking policies to roll out real-world trajectories. (b) Delta Action Model Training: Based on the real-world rollout data,
we train the delta action model by minimizing the discrepancy between simulation state s; and real-world state sj. (c) Policy Fine-tuning: We freeze the
delta action model, incorporate it into the simulator to align the real-world physics and then fine-tune the pre-trained motion tracking policy. (d) Real-World
Deployment: Finally, we deploy the fine-tuned policy directly in the real world without delta action model.

to train a delta (residual) action model that compensates for the
dynamics mismatch. Then ASAP fine-tunes pre-trained policies
with the delta action model integrated into the simulator to align
effectively with real-world dynamics. We evaluate ASAP across
three transfer scenarios—IsaacGym to IsaacSim, IsaacGym to
Genesis, and IsaacGym to the real-world Unitree G1 humanoid
robot. Our approach significantly improves agility and whole-
body coordination across various dynamic motions, reducing
tracking error compared to SysID, DR, and delta dynamics
learning baselines. ASAP enables highly agile motions that were
previously difficult to achieve, demonstrating the potential of
delta action learning in bridging simulation and real-world
dynamics. These results suggest a promising sim-to-real direction
for developing more expressive and agile humanoids.

I. INTRODUCTION

For decades, we have envisioned humanoid robots achieving
or even surpassing human-level agility. However, most prior
work [46, 74, 47, 73, 107, 19, 95, 50] has primarily focused
on locomotion, treating the legs as a means of mobility.
Recent studies [10, 25, 24, 26, 32] have introduced whole-
body expressiveness in humanoid robots, but these efforts have
primarily focused on upper-body motions and have yet to
achieve the agility seen in human movement. Achieving agile,
whole-body skills in humanoid robots remains a fundamental
challenge due to not only hardware limits but also the mis-
match between simulated dynamics and real-world physics.

Three main approaches have emerged to bridge the dynam-
ics mismatch: System Identification (SysID) methods, domain
randomization (DR), and learned dynamics methods. SysID
methods directly estimate critical physical parameters, such as
motor response characteristics, the mass of each robot link, and
terrain properties [102, 19]. However, these methods require a
pre-defined parameter space [49], which may not fully capture

the sim-to-real gap, especially when real-world dynamics fall
outside the modeled distribution. SysID also often relies on
ground truth torque measurements [29], which are unavailable
on many widely used hardware platforms, limiting its practi-
cal applicability. DR methods, in contrast, first train control
policies in simulation before deploying them on real-world
hardwares [85, 79, 59]. To mitigate the dynamics mismatch
between simulation and real-world physics, DR methods rely
on randomizing simulation parameters [87, 68]; but this can
lead to overly conservative policies [25], ultimately hindering
the development of highly agile skills. Another approach to
bridge dynamics mismatch is learning a dynamics model of
real-world physics using real-world data. While this approach
has demonstrated success in low-dimensional systems such
as drones [81] and ground vehicles [97], its effectiveness for
humanoid robots remains unexplored.

To this end, we propose ASAP, a two-stage framework that
aligns the dynamics mismatch between simulation and real-
world physics, enabling agile humanoid whole-body skills.
ASAP involves a pre-training stage where we train base
policies in simulation and a post-training stage that finetunes
the policy by aligning simulation and real-world dynamics. In
the pre-training stage, we train a motion tracking policy in
simulation using human motion videos as data sources. These
motions are first retargeted to humanoid robots [25], and a
phase-conditioned motion tracking policy [67] is trained to
follow the retargeted movements. However, directly deploying
this policy on real hardware results in degraded performance
due to the dynamics mismatch. To address this, the post-
training stage collects real-world rollout data, including pro-
prioceptive states and positions recorded by the motion capture
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Retargeting Human Video Motions to Robot Motions: (a) Human motions are captured from video. (b) Using TRAM [93], 3D human motion is

reconstructed in the SMPL parameter format. (c) A reinforcement learning (RL) policy is trained in simulation to track the SMPL motion. (d) The learned
SMPL motion is retargeted to the Unitree G1 humanoid robot in simulation. (e) The trained RL policy is deployed on the real robot, executing the final
motion in the physical world. This pipeline ensures the retargeted motions remain physically feasible and suitable for real-world deployment.

system. The collected data are then replayed in simulation,
where the dynamics mismatch manifests as tracking errors.
We then train a delta action model that learns to compensate
for these discrepancies by minimizing the difference between
real-world and simulated states. This model effectively serves
as a residual correction term for the dynamics gap. Finally, we
fine-tune the pre-trained policy using the delta action model,
allowing it to adapt effectively to real-world physics.

We validate ASAP on diverse agile motions and successfully
achieve whole-body agility on the Unitree G1 humanoid
robot [77]. Our approach significantly reduces motion tracking
error compared to prior SysID, DR, and delta dynamics
learning baselines in both sim-to-sim (IsaacGym to IsaacSim,
IsaacGym to Genesis) and sim-to-real (IsaacGym to Real)
transfer scenarios. Our contributions are summarized below.

1) We introduce ASAP, a framework that bridges the sim-
to-real gap by leveraging a delta action model trained
via reinforcement learning (RL) with real-world data.

2) We successfully deploy RL-based whole-body control
policies in the real world, achieving previously difficult-
to-achieve humanoid motions.

3) Extensive experiments in both simulation and real-world
settings demonstrate that ASAP effectively reduces dy-
namics mismatch, enabling highly agile motions on
robots and significantly reducing motion tracking errors.

4) To facilitate smooth transfer between simulators, we
develop and open-source a multi-simulator training and
evaluation codebase for help accelerate further research.

II. PRE-TRAINING: LEARNING AGILE HUMANOID SKILLS
A. Data Generation: Retargeting Human Video Data

To track expressive and agile motions, we collect a video
dataset of human movements and retarget it to robot motions,
creating imitation goals for motion-tracking policies, as shown
in Figure 3 and Figure 2 (a).

a) Transforming Human Video to SMPL Motions: We
begin by recording videos (see Figure 3 (a) and Figure 12)
of humans performing expressive and agile motions. Using
TRAM [93], we reconstruct 3D motions from videos. TRAM
estimates the global trajectory of the human motions in SMPL
parameter format [52], which includes global root translation,
orientation, body poses, and shape parameters, as shown in
Figure 3 (b). The resulting motions are denoted as Dgsypy .

b) Simulation-based Data Cleaning: Since the recon-
struction process can introduce noise and errors [25], some
estimated motions may not be physically feasible, making
them unsuitable for motion tracking in the real world. To
address this, we employ a “sim-to-data” cleaning procedure.
Specifically, we use MaskedMimic [86], a physics-based mo-
tion tracker, to imitate the SMPL motions from TRAM in
IsaacGym simulator [58]. The motions (Figure 3 (c)) that
pass this simulation-based validation are saved as the cleaned
dataset D§jsaned,

c) Retargeting SMPL Motions to Robot Motions: With
the cleaned dataset D§eaned in SMPL format, we retarget the
motions into robot motions following the shape-and-motion
two-stage retargeting process [25]. Since the SMPL parameters
estimated by TRAM represent various human body shapes,
we first optimize the shape parameter 3’ to approximate
a humanoid shape. By selecting 12 body links with cor-
respondences between humans and humanoids, we perform
gradient descent on 3’ to minimize joint distances in the rest
pose. Using the optimized shape 3’ along with the original
translation p and pose 8, we apply gradient descent to further
minimize the distances of the body links. This process ensures
accurate motion retargeting and produces the cleaned robot

trajectory dataset D54, as shown in Figure 3 (d).

B. Phase-based Motion Tracking Policy Training

We formulate the motion-tracking problem as a goal-
conditioned reinforcement learning (RL) task, where the policy
m is trained to track the retargeted robot movement trajectories
in the dataset D§$d. Inspired by [67], the state s; in-
cludes the robot’s proprioception s} and a time phase variable
¢ € [0,1], where ¢ = 0 represents the start of a motion and
¢ = 1 represents the end. This time phase variable alone ¢
is proven to be sufficient to serve as the goal state sf for
single-motion tracking [67]. The proprioception s} is defined
as sy = [@_aip Gr—aier @5 2%4s Go—as @r—5:0-1), With S-step
history of joint position g, € R??, joint velocity ¢, € R?3, root
angular velocity w?°°* € R?, root projected gravity g, € R?,
and last action a;_; € R?3. Using the agent’s proprioception
s¥ and the goal state s, we define the reward as 7, =
R (s, st), which is used for policy optimization. The specific
reward terms can be found in Table I. The action a; € R?3
corresponds to the target joint positions and is passed to a



PD controller that actuates the robot’s degrees of freedom. To
optimize the policy, we use the proximal policy optimization
(PPO) [80], aiming to maximize the cumulative discounted
reward E Zthl ~t=1r,|. We identify several design choices
that are crucial for achieving stable policy training:

a) Asymmetric Actor-Critic Training: Real-world hu-
manoid control is inherently a partially observable Markov
decision process (POMDP), where certain task-relevant prop-
erties that are readily available in simulation become un-
observable in real-world scenarios. However, these missing
properties can significantly facilitate policy training in simu-
lation. To bridge this gap, we employ an asymmetric actor-
critic framework, where the critic network has access to
privileged information such as the global positions of the
reference motion and the root linear velocity, while the actor
network relies solely on proprioceptive inputs and a time-phase
variable. This design not only enhances phase-based motion
tracking during training but also enables a simple, phase-
driven motion goal for sim-to-real transfer. Crucially, because
the actor does not depend on position-based motion targets,
our approach eliminates the need for odometry during real-
world deployment—overcoming a well-documented challenge
in prior work on humanoid robots [25, 24].

b) Termination Curriculum of Tracking Tolerance:
Training a policy to track agile motions in simulation is chal-
lenging, as certain motions can be too difficult for the policy
to learn effectively. For instance, when imitating a jumping
motion, the policy often fails early in training and learns to
remain on the ground to avoid landing penalties. To mitigate
this issue, we introduce a termination curriculum that progres-
sively refines the motion error tolerance throughout training,
guiding the policy toward improved tracking performance.
Initially, we set a generous termination threshold of 1.5m,
meaning the episode terminates if the robot deviates from
the reference motion by this margin. As training progresses,
we gradually tighten this threshold to 0.3m, incrementally
increasing the tracking demand on the policy. This curriculum
allows the policy to first develop basic balancing skills before
progressively enforcing stricter motion tracking, ultimately
enabling successful execution of high-dynamic behaviors.

c) Reference State Initialization: Task initialization plays
a crucial role in RL training. We find that naively initializing
episodes at the start of the reference motion leads to policy
failure. For example, in Cristiano Ronaldo’s jumping training,
starting the episode from the beginning forces the policy to
learn sequentially. However, a successful backflip requires
mastering the landing first—if the policy cannot land correctly,
it will struggle to complete the full motion from takeoff.
To address this, we adopt the Reference State Initialization
(RSI) framework [67]. Specifically, we randomly sample time-
phase variables between 0 and 1, which effectively randomizes
the starting point of the reference motion for the policy
to track. We then initialize the robot’s state based on the
corresponding reference motion at that phase, including root
position and orientation, root linear and angular velocities

and joint positions and velocities. This initialization strategy
significantly improves motion tracking training, particularly
for agile whole-body motions, by allowing the policy to
learn different motion phases in parallel rather than being
constrained to a strictly sequential learning process.

d) Reward Terms: We define the reward function r; with
the sum of three terms: 1) penalty, 2) regularization, and 3)
task rewards. A detailed summary of these components is
provided in Table I.

TABLE I
REWARD TERMS FOR PRETRAINING
Term Weight Term Weight
Penalty
DoF position limits —10.0  DoF velocity limits —5.0
Torque limits —5.0 Termination —200.0
Regularization
Torques —1x107° Action rate —-0.5
Feet orientation —2.0 Feet heading —0.1
Slippage —-1.0
Task Reward
Body position 1.0 VR 3-point 1.6
Body position (feet) 2.1 Body rotation 0.5

Body angular velocity 0.5
DoF position 0.75

Body velocity 0.5
DoF velocity 0.5

e) Domain Randomizations: To improve the robustness
of the pre-trained policy in Figure 2 (a), we utilized basic
domain randomization techniques listed in Table VI.

ITI. POST-TRAINING: TRAINING DELTA ACTION MODEL
AND FINE-TUNING MOTION TRACKING POLICY

The policy trained in the first stage can track the reference
motion in the real-world but does not achieve high motion
quality. Thus, during the second stage, as shown in Fig-
ure 2 (b) and (c), we leverage real-world data rolled out by the
pre-trained policy to train a delta action model, followed by
policy refinement through dynamics compensation using this
learned delta action model.

A. Data Collection

We deploy the pretrained policy in the real world to per-
form whole-body motion tracking tasks (as depicted in Fig-
ure 9) and record the resulting trajectories, denoted as D" =
{sb, ab, ..., s, a%}, as illustrated in Figure 2 (a). At each
timestep ¢, we use a motion capture device and onboard
sensors to record the state: s; = [ph®e, b3 qbase ybase g, 4],
where p?®¢ € R? represents the robot base 3D position,
vP®¢ ¢ R3 is base linear velocity, a?®° € R* is the robot
base orientation represented as a quaternion, w?*¢ € R? is the
base angular velocity, ¢; € R?? is the vector of joint positions,
and ¢, € R?3 represents joint velocities.

B. Training Delta Action Model

Due to the sim-to-real gap, when we replay the real-world
trajectories in simulation, the resulting simulated trajectory
will likely deviate significantly from real-world recorded tra-
jectories. This discrepancy is a valuable learning signal for
learning the mismatch between simulation and real-world
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Baselines of ASAP. (a) Model-free RL training. (b) System ID from real to sim using real-world data. (c) Learning delta dynamics model using

real-world data. (d) Our proposed method, learning delta action model using real-world data.

physics. We leverage an RL-based delta/residual action model
to compensate for the sim-to-real physics gap.

As illustrated in Figure 2 (b), the delta action model is
defined as Aa; = ﬂ'eA(st,at), where the policy 71"9A learns
to output corrective actions based on the current state s; and
the action a;. These corrective actions (Aa;) are added to the
real-world recorded actions (a;) to account for discrepancies
between simulation and real-world dynamics.

The RL environment incorporates this delta action model
by modifying the simulator dynamics as follows: s;y; =
5™ (s¢,al + Aay) where f5™ represents the simulator’s dy-
namics, a; is the reference action recorded from real-world
rollouts, and Aa; introduces corrections learned by the delta
action model.

TABLE II
REWARD TERMS FOR DELTA ACTION LEARNING
Term Weight Term Weight
Penalty
DoF position limits —10.0 DoF velocity limits —5.0
Torque limits —0.1 Termination —200.0
Regularization
Action rate —0.01 Action norm —-0.2
Task Reward
Body position 1.0 VR 3-point 1.0

Body position (feet) 1.0
Body angular velocity 0.5
DoF position 0.5

Body rotation 0.5
Body velocity 0.5
DoF velocity 0.5

During each RL step:

1) The robot is initialized at the real-world state sj.

2) A reward signal is computed to minimize the discrep-
ancy between the simulated state s, and the recorded
real-world state s, ;, with an additional action magni-
tude regularization term exp(—||a¢||) — 1), as specified
in Table II. The workflow is illustrated in Figure 2 (b).

3) PPO is used to train the delta action policy W(,A, learning
corrected Aa; to match simulation and the real world.

By learning the delta action model, the simulator can accu-
rately reproduce real-world failures. For example, consider a
scenario where the simulated robot can jump because its motor
strength is overestimated, but the real-world robot cannot jump
due to weaker motors. The delta action model 75 will learn
to reduce the intensity of lower-body actions, simulating the
motor limitations of the real-world robot. This allows the
simulator to replicate the real-world dynamics and enables the
policy to be fine-tuned to handle these limitations effectively.

C. Fine-tuning Motion Tracking Policy under New Dynamics

With the learned delta action model 72(s;,a¢), we can
reconstruct the simulation environment with

St41 = fASAP(Sty ag) = fSim(Su at + 7TA(St7 at)),

As shown in Figure 2 (c), we keep the 72 model parameters
frozen, and fine-tune the pretrained policy with the same
reward summarized in Table I.

D. Policy Deployment

Finally, we deploy the fine-tuned policy without delta action
model in the real world as shown in Figure 2 (d). The
fine-tuned policy shows enhanced real-world motion tracking
performance compared to the pre-trained policy. Quantitative
improvements will be discussed in Section IV.

IV. PERFORMANCE EVALUATION OF ASAP

In this section, we present extensive experimental results
on three policy transfers: IsaacGym [58] to IsaacSim [63],
IsaacGym to Genesis [6], and IsaacGym to real-world Unitree
Gl humanoid robot. Our experiments aim to address the
following key questions:

e Q1: Can ASAP outperform other baseline methods to
compensate for the dynamics mismatch?

e Q2: Can ASAP finetune policy to outperform SysID and
Delta Dynamics methods?

e Q3: Does ASAP work for sim-to-real transfer?

Experiments Setup. To address these questions, we eval-
uate ASAP on motion tracking tasks in both simulation
(Section IV-A and Section IV-B) and real-world settings
(Section IV-C).

In the simulation, we use the retargeted motion dataset
from the videos we shoot, denoted as Dgﬁﬂed, which con-
tains diverse human motion sequences. We select 43 motions
categorized into three difficulty levels: easy, medium, and
hard (as partially visualized in Figure 6), based on mo-
tion complexity and the required agility. ASAP is evaluated
through simulation-to-simulation transfer by training policies
in IsaacGym and using two other simulators, IsaacSim and
Genesis, as a proxy of “real-world” environments. This setup
allows for a systematic evaluation of ASAP’s generalization
and transferability. The success of the transfer is assessed by
metrics described in subsequent sections.

For real-world evaluation, we deploy ASAP on Unitree
G1 robot with fixed wrists to track motion sequences that
has obvious sim-to-real gap. These sequences are chosen to
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Replaying IsaacSim State-Action trajecories in IsaacGym. The upper four panels visualize the Unitree G1 humanoid executing a soccer-shooting

motion under four distinct open-loop actions. Corresponding metric curves (bottom) quantify tracking performance. Importantly, our delta action model (ASAP)

is trained across multiple motions and is not overfitted to this specific example.

capture a broad range of motor capabilities and demonstrate
the sim-to-real capability for agile whole-body control.

Baselines. We have the following baselines:

Oracle: This baseline is trained and evaluated entirely
within IsaacGym. It assumes perfect alignment between the
training and testing environments, serving as an upper bound
for performance in simulation.

Vanilla (Figure 4 a): The RL policy is trained in Isaac-
Gym and evaluated in IsaacSim, Genesis, or the real world.

SysID (Figure 4 b): We identify the following representa-
tive parameters in our simulated model that best align the ones
in the real world: base center of mass (CoM) shift (¢, ¢y, ¢.),
base link mass offset ratio k,, and low-level PD gain ratios
(ki, k%) where i = 1,2,...,23. Specifically, we search the
best parameters among certain discrete ranges by replaying
the recorded trajectories in real with different simulation
parameters summarized in Table VII. We then finetune the pre-
trained policy in IsaacGym with the best SysID parameters.

DeltaDynamics (Figure 4 c¢): We train a residual dy-
namics model feA(st, at) to capture the discrepancy between
simulated and real-world physics. The detailed implementation
is introduced in Section VIII-C

Metrics. We report success rate, deeming imitation un-
successful when, at any point during imitation, the average
difference in body distance is on average further than 0.5m.
We evaluate policy’s ability to imitate the reference motion
by comparing the tracking error of the global body position
Esq mpipe (mm), the root-relative mean per-joint (MPJPE) Eppine

TABLE III
OPEN-LOOP PERFORMANCE COMPARISON ACROSS SIMULATORS AND
MOTION LENGTHS.

Simulator & Length IsaacSim Genesis

Length Method

Eg—mpjpe Empjpe Eace Evel Eg—mpjpe Empjpe Eace Evel

OpenLoop 195 151 6.44 5.80 19.8 153 6.53 5.88

0255 SysID 194 150 6.43 574 193 15.0 6.42 5.73
. DeltaDynamics 24.4 13.6 943 7.85 20.0 124 8.42 6.89
SAP 199 156 648 586 19.0 149 6.19 5.59
OpenLoop 333 232 6.80 6.84 33.1 23.0 6.78 6.82

055 SysID 32.1 222 657 656 322 223 6.57 6.57
’ DeltaDynamics  36.5 164 889 798 278 14.0 7.63 6.74
ASAP 268 192 5.09 536 259 184 493 519
OpenLoop 80.8 435 106 11.1 825 445 108 114

10s SysID 77.6 415 102 107 765  41.6 10.0 10.5
. DeltaDynamics 68.1  21.5 9.61 9.14 502  17.2 8.19 7.62
ASAP 379 229 438 526 369 22,6 423510

(mm), acceleration error F,.. (mm/frame?), and root velocity
FEye (mm/frame). The mean values of the metrics are computed
across all motion sequences used.

A. Comparison of Dynamics Matching Capability

To address Q1 (Can ASAP outperform other baseline meth-
ods to compensate for the dynamics mismatch?), we establish
sim-to-sim transfer benchmarks to assess the effectiveness of
different methods in bridging the dynamics gap. IsaacGym
serves as the training environment, while IsaacSim and Gen-
esis function as testing environments. The primary objective
is to evaluate the generalization capability of each approach
when exposed to new dynamics conditions. Open-loop evalua-
tion measures how accurately a method can reproduce testing-



TABLE IV
CLOSED-LOOP MOTION IMITATION EVALUATION ACROSS DIFFERENT SIMULATORS. ALL VARIANTS ARE TRAINED WITH IDENTICAL REWARDS.

Test Environment IsaacSim Genesis
Level Method Succ T ngmpjpe wlz Empjpe i« Eace »L Evel »L Succ T Eg—mpjpe »L Empjpe ~L Eace lr Evel ~L
Oracle (IsaacGym — IsaacGym) 100%=+0000% 97.5+0605 43.2+0112 2.56+0024 4.48+0023 100%=+0000% 97.5+0605 43.2+0.112 2.56+0024 4.48+0.023
Vanilla (IsaacGym — TestEnv)  100%=+0000% 107 +osis 45.4+o0160 2.83+0012 4.59+0021 100%-+0.000% 140+185 70.1+0.626 2.68+0042 4.65+0046
Eas SysID 100%+0.000% 105 +135 47.8+0970 3.09+0011 4.98+0020 100%=+0000% 12740233 79.9+0330 2.99+0035 4.95+0012
Y DeltaDynamics 100%+0.000% 1274297  56.7+0390 3.50+0028 5.56+0031 83.3%+0000% 168+762 87.0+151 3.08+018 5.39+034
ASAP 100%+0.000% 106 +0498 44.3 +0.103 2.74 0025 4.46 +0020 100%+0.000% 125+475 73.5+0570 2.10+0083 4.11+0.133
Oracle (IsaacGym — IsaacGym) 100%=+o0000% 11140635 48.8+0133 2.63+0017 4.82+0019 100%=+0000% 11140635 48.8+0133 2.63+0017 4.82-+0.019
Vanilla (IsaacGym — TestEnv)  100%+o0000% 11440720 49.2+0.104 2.9240021 5.07+0016 94.3%+700% 1694576 72.0+0692 3.26+0076 5.86+0.101
Medium SYsID 100%=+0000% 115+1256 49.1+0560 3.43+0021 5.01+0017 100%=+0000% 138+270 75.4+118 3.1440042 5.50+0.0s8
DeltaDynamics 83.3%+0000% 151+262 68.0+0364 2.90+0047 5.90+0.07 83.3%+0000% 190+146 89.4+050 3.44+016 7.49+0.11
ASAP 100%+0.000% 112 +1648 49.3 +os574 2.53 0019 4.45 +o026 100%+0.000% 126+163 71.2+0.163 2.81+0037 5.13+0.066
Oracle (IsaacGym — IsaacGym) 100%=+o0000% 11640711 52.5+0208 3.40+0027 6.16 +0028 100%=+0000% 11640711 52.5+0298 3.40+0027 6.16 +0.028
Vanilla (IsaacGym — TestEnv)  100%=+0000% 148+0s84s 51.6+0.137 4.41+0055 6.88+0064 82.9%+ts570% 175+977 80.7+160 3.87+0175 7.1940.19
Hard SysID 100%+0000% 165+383 58.4+0220 4.87+0197 7.13+0131 100%=+0000% 186+384 93.0+149 4.98+0245 8.98+0.119
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Fig. 6.

Visual comparisons of motion imitation results across different difficulty levels

(Easy, Medium, Hard) for various tasks including Jump Forward,

Side Jump, Single Foot Balance, Squat, Step Backward, Step Forward, and Walk.

environment trajectories in the training environment. This is
achieved by rolling out the same trajectory executed in the
testing environment and assessing tracking discrepancies using
key metrics such as MPJPE. An ideal method should minimize
the discrepancies between training and testing trajectories
when replaying testing-environment actions, thereby demon-
strating an improved capacity for compensating dynamics
mismatch. Quantitative results in Table III demonstrate that
ASAP consistently outperforms the OpenLoop baseline across
all replayed motion lengths, achieving lower Ky ppipe and
Erpipe values, which indicate improved alignment with testing-
env trajectories. While SysID helps address short-horizon
dynamics gaps, it struggles with long-horizon scenarios due to
cumulative error buildup. DeltaDynamics improves upon both
SysID and OpenLoop for long horizons but suffers from over-
fitting, as evidenced by cascading errors magnified over time,
as shown in Figure 5. ASAP, however, demonstrates superior
generalization by learning residual policies that effectively
bridge the dynamics gap. Comparable trends are observed in
the Genesis simulator, where ASAP achieves notable improve-
ments across all metrics relative to the baseline. These results
emphasize the efficacy of learning delta action model to reduce
the physics gap and improve open-loop replay performance.

B. Comparison of Policy Fine-Tuning Performance

To address Q2 (Can ASAP finetune policy to outperform
SysID and Delta Dynamics methods?), we evaluate the effec-
tiveness of different methods in fine-tuning RL policies for
improved testing-environment performance. We fine-tune RL
policies in modified training environments and subsequently
deploy them in the testing environments, quantifying motion-
tracking errors in testing environments. As shown in Table IV,
ASAP consistently outperforms baselines such as Vanilla,
SysID, and DeltaDynamics across all difficulty levels (Easy,
Medium, and Hard) in both simulators (IsaacSim and Genesis).
For the Easy level, our method achieves the lowest Eo_mpipe and
Ernpjpe in IsaacSim (Ey.mpjpe = 106 and Enpjpe = 44.3) and
Genesis (Egmpjpe = 125 and Eypipe = 73.5), with minimal ac-
celeration (E,..) and velocity (Ey) errors. In more challenging
tasks, such as the Hard level, our method continues to excel,
significantly reducing motion-tracking errors. For instance,
in Genesis, it achieves Eompipe = 129 and Fppipe = 77.0,
outperforming SysID and DeltaDynamics by substantial mar-
gins. Additionally, our method consistently maintains a 100%
success rate across both simulators, unlike DeltaDynamics,
which experiences lower success rates in harder environments.
To further illustrate the advantages of ASAP, we provide
per-step visualizations in Figure 7, comparing ASAP with
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Fig. 7. Visualization of G1 motion tracking before and after ASAP fine-tuning in IsaacGym, IsaacSim and Genesis. Top: LeBron James’ “Silencer” motion
tracking policy fine-tuning for IsaacGym to IsaacSim. Bottom: single foot balance motion tracking policy fine-tuning for IsaacGym to Genesis.

RL policies deployed without fine-tuning. These visualizations
demonstrate that ASAP successfully adapts to new dynamics
and maintains stable tracking performance, whereas baseline
methods accumulate errors over time, leading to degraded
tracking capability. These results highlight the robustness and
adaptability of our approach in addressing the sim-to-real gap
while preventing overfitting and exploitation. The findings
validate that ASAP is an effective paradigm for improving
closed-loop performance and ensuring reliable deployment in
complex real-world scenarios.

C. Real-World Evaluations

To answer Q3 (Does ASAP work for sim-to-real transfer?).
We validate ASAP on real-world Unitree G1 robot.

Real-World Data. In the real-world experiments, we pri-
oritize both motion safety and representativeness by selecting
five motion-tracking tasks, including (i) kick, (ii) jump for-
ward, (iii) step forward and back, (iv) single foot balance
and (v) single foot jump. However, collecting over 400 real-
world motion clips— the minimum required to train the full
23-DoF delta action model in simulation, as discussed in-
Section III-B—poses significant challenges. Our experiments

involve highly dynamic motions that cause rapid overheating
of joint motors, leading to hardware failures (two Unitree G1
robots broke during data collection). Given these constraints,
we adopt a more sample-efficient approach by focusing exclu-
sively on learning a 4-DoF ankle delta action model rather than
the full-body 23-DoF model. This decision is motivated by
two key factors: (1) the limited availability of real-world data
makes training the full 23-DoF delta action model infeasible,
and (2) the Unitree G1 robot [77] features a mechanical
linkage design in the ankle, which introduces a significant
sim-to-real gap that is difficult to bridge with conventional
modeling techniques [37]. Under this setting, the original 23
DoF delta action model reduces to 4 DoF delta action model,
which needs much less data to be trainable. In practice, we
collect 100 motion clips, which prove sufficient to train an
effective 4-DoF delta action model for real-world scenarios.

We execute the tracking policy 30 times for each task. In
addition to these motion-tracking tasks, we also collect 10
minutes of locomotion data. The locomotion policy will be
addressed in the next section, which is also utilized to bridge
different tracking policies.

Policy Transition. In the real world, we cannot easily reset
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Visualization of LeBron James’ “Silencer” motion on the G1 robot before (upper figure enclosed in blue) and after (bottom figure enclosed in red)
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ASAP finetuning, the robot behaves more smoothly and reduces jerky lower-body motions.

Fig. 9. We deploy the pretrained policy of a forward jump motion tracking
task, challenging the 1.35m-tall Unitree G1 robot for a forward leap over 1m.

the robot as in simulators, and therefore we train a robust
locomotion policy for the policy transition between different
motion-tracking tasks. Our locomotion command contains
(v,w,), where v and w indicate the linear and angular
velocities while II indicates the command to walk or stand
still. After each motion-tracking task is done, our locomotion
policy will take over to keep the robot balance until the next
motion-tracking task begins. In this way, the robot is able to
execute multiple tasks without manually resetting.
Real-World Results. The sim-to-real gap is more pro-
nounced than simulator-to-simulator discrepancies due to fac-
tors such as noisy sensor input, inaccuracies in robot modeling,
and actuator differences. To evaluate the effectiveness of
ASAP in addressing these gaps, we compare the closed-
loop performance of ASAP with the Vanilla baseline on two
representative motion tracking tasks (kicking and “Silencer”)
in which observe obvious sim-to-real gaps. To show the

TABLE V
REAL-WORLD CLOSED-LOOP PERFORMANCE COMPARING WITH AND
WITHOUT ASAP FINETUNING ON ONE IN-DISTRIBUTION MOTION AND
ONE OUT-OF-DISTRIBUTION MOTION.

Real-World-Kick Real-World-LeBron (OOD)
Method Eg—mpjpe Empjpe Eace Evel Eg—mpjpe Empjpe Eace Evel

Vanilla 612 435 296 291 159 553 3.43 643
ASAP 50.2  40.1 2.46 2.70 112 47.5 2.84 5.94

Motion

generalizability of the learned delta action model for out-of-
distribution motions, we also fine-tune the policy for LeBron
James’ “Silencer” motion as shown in Figure 1 and Figure 8.
The experiment data is summarized in Table V. It shows that
ASAP outperforms the baseline on both in-distribution and
out-of-distribution humanoid motion tracking tasks, achieving
a considerable reduction of the tracking errors across all
key metrics (Eg-mpjpe;s Empjpe, Face and Eye). These findings
highlight the effectiveness of ASAP in improving sim-to-real
transfer for agile humanoid motion tracking.

V. EXTENSIVE STUDIES AND ANALYSES

In this section, we aim to thoroughly analyze ASAP by
addressing three central research questions:

e Q4: How to best train the delta action model of ASAP?
e Q5: How to best use the delta action model of ASAP?
¢ Q6: Why and how does ASAP work?

A. Key Factors in Training Delta Action Models

To Answer Q4 (How to best train the delta action model
of ASAP). we conduct a systematic study on key factors influ-
encing the performance of the delta action model. Specifically,
we investigate the impact of dataset size, training horizon,
and action norm weight, evaluating their effects on both open-
loop and closed-loop performance. Our analysis uncovers the
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Analysis of dataset size, training horizon, and action norm on the performance of 7. (a) Dataset Size: Mean Per Joint Position Error (MPJPE)

is evaluated for both in-distribution (green) and out-of-distribution (blue) scenarios. Increasing dataset size leads to enhanced generalization, evidenced by
decreasing errors in out-of-distribution evaluations. Closed-loop MPJPE (red bars) also shows improvement with larger datasets. (b) Training Horizon: Open-
loop MPJPE (heatmap) improves across evaluation points as training horizons increase, achieving the lowest error at 1.5s. However, closed-loop MPJPE (red
bars) shows a sweet spot at a training horizon of 1.0s, beyond which no further improvements are observed. The red dashed line represents the pretrained
baseline without 72 fine-tuning. (c) Action Norm: The action norm weight significantly influences performance. Both open-loop and closed-loop MPIPE
decrease as the weight increases up to 0.1, achieving the lowest error. However, further increases in the action norm weight result in degradation of open-loop
performance, highlighting the trade-off between action smoothness and policy flexibility.

essential principles for effectively training a high-performing
delta action model.

a) Dataset Size: We analyze the impact of dataset size
on the training and generalization of 72. Simulation data is
collected in Isaac Sim, and 72 is trained in Isaac Gym. Open-
loop performance is assessed on both in-distribution (training)
and out-of-distribution (unseen) trajectories, while closed-loop
performance is evaluated using the fine-tuned policy in Isaac
Sim. As shown in Figure 10 (a), increasing the dataset size
improves 7’s generalization, evidenced by reduced errors in
out-of-distribution evaluations. However, the improvement in
closed-loop performance saturates, with a marginal decrease
of only 0.65% when scaling from 4300 to 43000 samples,
suggesting limited additional benefit from larger datasets.

b) Training Horizon: The rollout horizon plays a crucial
role in learning 7. As shown in Figure 10 (b), longer
training horizons generally improve open-loop performance,
with a horizon of 1.5s achieving the lowest errors across
evaluation points at 0.25s, 0.5s, and 1.0s. However, this trend
does not consistently extend to closed-loop performance. The
best closed-loop results are observed at a training horizon of
1.0s, indicating that excessively long horizons do not provide
additional benefits for fine-tuned policy.

c) Action Norm Weight: Training 72 incorporates an
action norm reward to balance dynamics alignment and min-
imal correction. As illustrated in Figure 10 (c), both open-
loop and closed-loop errors decrease as the action norm

weight increases, reaching the lowest error at a weight of 0.1.
However, further increasing the action norm weight causes
open-loop errors to rise, likely due to the minimal action
norm reward dominates in the delta action RL training. This
highlights the importance of carefully tuning the action norm
weight to achieve optimal performance.

B. Different Usage of Delta Action Model

To answer Q5 (How to best use the delta action model of
ASAP?), we compare multiple strategies: fixed-point iteration,
gradient-based optimization, and reinforcement learning (RL).
Given a learned delta policy 72 such that:

fSim(S,G,—l- WA(S,G)) ~ freal(s’a)7

and a nominal policy 7(s) that performs well in simulation,
the goal is to fine-tune 7(s) for real-world deployment.

A simple approach is one-step dynamics matching, which
leads to the relationship:

m(s) = 7t(s) — m2(s,7(s)).

We consider two RL-free methods: fixed-point iteration and
gradient-based optimization. Fixed-point iteration refines 7(s)
iteratively, while gradient-based optimization minimizes a loss
function to achieve a better estimate. These methods are
compared against RL fine-tuning, which adapts 7(s) using
reinforcement learning in simulation. The detailed derivation
of these two baselines is summarized in Section VIII-D.



Our experiments in Figure 11 show that RL fine-tuning
achieves the lowest tracking error during deployment, out-
performing training-free methods. Both RL-free approaches
are myopic and suffer from out-of-distribution issues, limit-
ing their real-world applicability (more discussions in Sec-
tion VIII-D).
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Fig. 11. MPJPE comparison over timesteps for fine-tuning methods using
delta actionmodel. RL Fine-Tuning achieves the lowest error, while Fixed-
Point Iteration and Gradient Search perform worse than the baseline (Before
DeltaA) showing the highest error.

C. Does ASAP Fine-Tuning Outperform Random Action Noise
Fine-Tuning?

To answer Q6 (How does ASAP work?), we validate ASAP
finetuning is better than injecting random-action-noise-based
finetuning. And we visualize the average magnitude of the
delta action model for each joint.

Random torque noise [7] is a widely used domain random-
ization technique for legged robots. To determine whether
delta action facilitates fine-tuning of pre-trained policies to-
ward real-world dynamics rather than merely enhancing ro-
bustness through random action noise, we analyze its impact.
Specifically, we assess the effect of applying random action
noise during policy fine-tuning in Isaac Gym by modifying
the environment dynamics as s;,1 = f%™(s;, a; +35,), where
d, ~ U0, 1], and deploy it in Genesis. We conduct an ablation
study to examine the influence of the noise magnitude, S,
varying from 0.025 to 0.4. As shown in Figure 12, within
the constrained range of 8 € [0.025,0.2], policies fine-tuned
with action noise outperform those without fine-tuning in
terms of global tracking error (MPJPE). However, the per-
formance of the action noise approach (MPJPE of 150) does
not match the precision achieved by ASAP (MPJPE of 126).
Furthermore, we visualize the average output of 72 learned
from IsaacSim data in Figure 13, which reveals non-uniform
discrepancies across joints. For example, in the G1 humanoid
robot under our experimental setup, lower-body motors exhibit
a larger dynamics gap compared to upper-body joints. Within
the lower-body, the ankle and knee joints show the most
pronounced discrepancies. Additionally, asymmetries between
the left and right body motors further highlight the complexity.
Such structured discrepancies cannot be effectively captured
by merely adding uniform action noise. These findings, along
with the results in Figure 5, demonstrate that delta action
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Fig. 12. MPJPE vs. Noise Level for policies fine-tuned with random action
noise. Policies with noise levels 3 € [0.025, 0.2] show improved performance
compared to no fine-tuning. Delta action achieves better tracking precision
(126 MPJPE) compared to the best action noise (173 MPJPE).
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compute the average absolute value of each joint over the 4300-episode
dataset. Larger red dots indicate higher values. The results suggest that lower-
body motors exhibit a larger discrepancy compared to upper-body joints, with
the most significant gap observed in the ankle pitch joint of the G1 humanoid.

not only enhances policy robustness but also enables effec-
tive adaptation to real-world dynamics, outperforming naive
randomization strategies.

VI. RELATED WORKS
A. Learning-based Methods for Humanoid Control

In recent years, learning-based methods have made signif-
icant progress in whole-body control for humanoid robots.
Primarily leveraging reinforcement learning algorithms [80]
within physics simulators [58, 63, 88], humanoid robots have
learned a wide range of skills, including robust locomo-



tion [44, 98, 45, 48, 47, 74, 73, 19, 106], jumping [46], and
parkour [50, 107]. More advanced capabilities, such as danc-
ing [105, 32, 10], loco-manipulation [25, 53, 15, 24], and even
backflipping [78], have also been demonstrated. Meanwhile,
the humanoid character animation community has achieved
highly expressive and agile whole-body motions in physics-
based simulations [71, 86, 55], including cartwheels [67],
backflips [69], sports movements [104, 90, 56, 91, 92], and
smooth object interactions [86, 17, 22]. However, transferring
these highly dynamic and agile skills to real-world humanoid
robots remains challenging due to the dynamics mismatch
between simulation and real-world physics. To address this
challenge, our work focuses on learning and compensating for
this dynamics mismatch, enabling humanoid robots to perform
expressive and agile whole-body skills in the real world.

B. Offline and Online System Identification for Robotics

The dynamics mismatch between simulators and real-world
physics can be attributed to two primary factors: inaccuracies
in the robot model descriptions and the presence of complex
real-world dynamics that are difficult for physics-based simu-
lators to capture. Traditional approaches address these issues
using system identification (SysID) methods [39, 5], which
calibrate the robot model or simulator based on real-world
performance. These methods can be broadly categorized into
offline SysID and online SysID, depending on whether system
identification occurs at test time. Offline SysID methods typi-
cally collect real-world data and adjust simulation parameters
to train policies in more accurate dynamics. The calibration
process may focus on modeling actuator dynamics [85, 29,
99], refining robot dynamics models [36, 2, 18, 21, 30], explic-
itly identifying critical simulation parameters [102, 9, 13, 96],
learning a distribution over simulation parameters [75, 27, 4],
or optimizing system parameters to maximize policy perfor-
mance [64, 76]. Online SysID methods, in contrast, aim to
learn a representation of the robot’s state or environment
properties, enabling real-time adaptation to different condi-
tions. These representations can be learned using optimization-
based approaches [101, 103, 43, 70], regression-based meth-
ods [100, 40, 89, 19, 31, 60, 14, 72, 61, 41, 62, 42], next-state
reconstruction techniques [65, 51, 54, 94, 83], direct reward
maximization [47], or by leveraging tracking and prediction
errors for online adaptation [66, 57, 28, 16]. Our framework
takes a different approach from traditional SysID methods
by learning a residual action model that directly compensates
for dynamics mismatch through corrective actions, rather than
explicitly estimating system parameters.

C. Residual Learning for Robotics

Learning a residual component alongside learned or pre-
defined base models has been widely used in robotics. Prior
work has explored residual policy models that refine the
actions of an initial controller [84, 34, 8, 1, 12, 20, 3, 33, 42].
Other approaches leverage residual components to correct
inaccuracies in dynamics models [66, 35, 38, 82, 23] or to
model residual trajectories resulting from residual actions [11]

for achieving precise and agile motions. RGAT [35] uses
a residual action model with a learned forward dynamics
to refine the simulator. Our framework builds on this idea
by using RL-based residual actions to align the dynamics
mismatch between simulation and real-world physics, enabling
agile whole-body humanoid skills.

VII. CONCLUSION

We present ASAP, a two-stage framework that bridges the
sim-to-real gap for agile humanoid control. By learning a
universal delta action model to capture dynamics mismatch,
ASAP enables policies trained in simulation to adapt seam-
lessly to real-world physics. Extensive experiments demon-
strate significant reductions in motion tracking errors (up to
52.7% in sim-to-real tasks) and successful deployment of
diverse agile skills—including agile jumps and kicks—on the
Unitree G1 humanoid. Our work advances the frontier of sim-
to-real transfer for agile whole-body control, paving the way
for versatile humanoid robots in real-world applications.

VIII. LIMITATIONS

While ASAP demonstrates promising results in bridging the
sim-to-real gap for agile humanoid control, our framework has
several real-world limitations that highlights critical challenges
in scaling agile humanoid control to real-world:

o Hardware Constraints: Agile whole-body motions exert
significant stress on robots, leading to motor overheating
and hardware failure during data collection. Two Unitree
G1 robots were broken to some extent during our exper-
iments. This bottleneck limits the scale and diversity of
real-world motion sequences that can be safely collected.

« Dependence on Motion Capture Systems: Our pipeline
requires MoCap setup to record real-world trajectories.
This introduces practical deployment barriers in unstruc-
tured environments where MoCap setups are unavailable.

o Data-Hungry Delta Action Training: While reducing
the delta action model to 4 DoF ankle joints improved
sample efficiency, training the full 23 DoF model remains
impractical for real-world deployment due to the large
demand of required motion clips (e.g., > 400 episodes in
simulation for the 23 DoF delta action training).

Future directions could focus on developing damage-aware
policy to mitigate hardware risks, leveraging MoCap-free
alignment to eliminate the reliance on MoCap, and explor-
ing adaptation techniques for delta action models to achieve
sample-efficient few-shot alignment.
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APPENDIX
A. Domain Randomization in Pre-Training
To improve the robustness and generalization of the pre-
trained policy in Figure 2 (a), we utilized the domain random-
ization technics listed in Table VI.

TABLE VI
DOMAIN RANDOMIZATIONS

Term Value

Dynamics Randomization

Friction U(0.2,1.1)
P Gain 14(0.925,1.05) X default
Control delay U(20,40)ms

External Perturbation

Push robot interval = 10s, vy = 0.5 m/s

B. SysID Parameters

We identify the following representative robot parameters in
our simulated model that best align the ones in the real world:
base center of mass (CoM) shift (¢, ¢y, c,), base link mass
offset ratio k,, and low-level PD gain ratios (k},k}) where
i =1,2,...,23, as shown in Table VII. .

TABLE VII
SYSID PARAMETERS

Parameter Range Parameter Range
Ce [—0.02,0.0,0.02] Cy [—0.02,0.0,0.02]
cz [—0.02,0.0,0.02] km [0.95,1.0,1.05]
k;, [0.95,1.0,1.05] kg [0.95,1.0,1.05]

C. Implementation of Delta Dynamics Learning

Using the collected real-world trajectory, we replay the
action sequence {af ... @} in simulation and record
the resulting trajectory {s§™, ..., s5"}. The neural dynamics

model f£ is trained to predict the difference:
I — i = FR (R, 0,

In practice, we compute the mean squared error (MSE) loss
in an autoregressive setting, where the model predicts forward
for K steps and uses gradient descent to minimize the loss.
To balance learning efficiency and stability over long horizons,
we implement a schedule that gradually increases K during
training. Formally, the optimization objective is:

SfﬁTlK _fSim(...fSim(St,at)+f0A(5t»at)7"'7a’t+K)H'
—_——
K

ﬁ:

After training, we freeze the residual dynamics model ng
and integrate it into the simulator. During each simulation step,
the robot’s state is updated by incorporating the delta predicted
by the dynamics model. In this augmented simulation envi-
ronment, we finetune the previously pretrained policy to adapt
to the corrected dynamics, ensuring improved alignment with
real-world behavior.

D. Derivation of Training-free Methods of Using Delta Action

To formalize the problem, we start by assuming one-step
consistency between real and simulated dynamics:

Fel(s m(s) = f(s,m(s) + 75 (s, 7(s)))-

Under this assumption, one-step matching leads to the condi-
tion:

m(s) + 7 (s, m(s)) = 7 (s), (1)
= 7(s) = 7(s) — 72(s, 7(s)). (2)
To solve Equation (2), we consider:
1) Fixed-Point Iteration: We initialize y, = #(s) and
iteratively update:
Yrar = 7(s) = 7 (5, 9m), (3)

where yj, converges to a solution after K iterations.
2) Gradient-Based Optimization: Define the loss func-
tion:
Uy) = lly +72(s,9) — 7 (s)|. )

A gradient descent method minimizes this loss to solve
for y.

These methods approximate 7(s), but suffer from OOD
issues when trained on limited trajectories. RL fine-tuning, in
contrast, directly optimizes 7(s) for real-world deployment,
resulting in superior performance.

Problem of One-Step Matching. Note that Equation (2) is
derived from the one-step matching assumption (i.e., 7(s) +
72(s,m(s)) = #(s)). For multi-step matching, one has to
differentiate through fSim, which is, in general, intractable.
Therefore, both fixed-point iteration and gradient-based op-
timization assume one-step matching. This also explains the
advantages of RL-based fine-tuning: it effectively performs a
gradient-free multi-step matching procedure.
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